Certain unified integral involving Generalized Bessel-Maitland function

ISSN: 0972-7752

N.U. Khan, M. Ghayasuddin, *Waseem A. Khan and * Sarvat Zia

Department of Applied Mathematics,

Faculty of Engineering and Technology

Aligarh Muslim University, Aligarh-202002, India.

E-mail: nukhanmath@gmail.com, ghayas.maths@gmail.com

* Department of Mathematics,

Integral University, Lucknow-226026, India.

E-mail: waseem08_khan@rediffmail.com sarvatzia@gmail.com

Abstract: MacRobert in his research paper established certain new finite integral formula, which is expressed in terms of gamma functions. Using the result of MacRobert, in this paper, we present a new integral formula involving the generalized Bessel-Maitland function, which is expressed in terms of generalized (Wright) hypergeometric function. Some interesting special cases of our main result are also considered.

Keywords: Generalized Bessel-Maitland function, Generalized (Wright) hypergeometric functions and Integrals.

2000 AMS Subject Classifications. 33C60.

1. Introduction

Many unified integrals involving special functions of mathematical physics have been presented by a number of authors, for example, Rathie ([8], [9]), Ali [1], Choi and Agarwal [3] and Choi et al. [4]. Motivated by the above-mentioned works, in the present paper, we establish a new unified integral formula involving the Bessel-Maitland function. Some special cases of our main result are also considered.

The Bessel function $J_{\nu}(z)$ of the first kind (and order ν), defined by (See [7])

$$J_{\nu}(z) = \sum_{m=0}^{\infty} \frac{(-1)^m (z/2)^{\nu+2m}}{m! \Gamma(\nu+m+1)},$$
(1.1)

it is well known that

$$J_{-\frac{1}{2}}(z) = \sqrt{\frac{2}{\pi z}} \cos z \tag{1.2}$$